Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans
نویسندگان
چکیده
Many animal species live in close association with commensal and symbiotic microbes (microbiota). Recent studies have revealed that the status of gastrointestinal tract microbiota can influence nutrition-related syndromes such as obesity and type-2 diabetes, and perhaps aging. These morbidities have a profound impact in terms of individual suffering, and are an increasing economic burden to modern societies. Several theories have been proposed for the influence of microbiota on host metabolism, but these largely remain to be proven. In this article we discuss how microbiota may be manipulated (via pharmacology, diet, or gene manipulation) in order to alter metabolism, immunity, health and aging in the host. The nematode Caenorhabditis elegans in combination with one microbial species is an excellent, defined model system to investigate the mechanisms of host-microbiota interactions, particularly given the combined power of worm and microbial genetics. We also discuss the multifaceted nature of the worm-microbe relationship, which likely encompasses predation, commensalism, pathogenicity and necromeny.
منابع مشابه
Tocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans
Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...
متن کاملTocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans
Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...
متن کاملDietary and microbiome factors determine longevity in Caenorhabditis elegans
Diet composition affects organismal health. Nutrient uptake depends on the microbiome. Caenorhabditis elegans fed a Bacillus subtilis diet live longer than those fed the standard Escherichia coli diet. Here we report that this longevity difference is primarily caused by dietary coQ, an antioxidant synthesized by E. coli but not by B. subtilis. CoQ-supplemented E. coli fed worms have a lower oxi...
متن کاملExtension of lifespan and protection against oxidative stress by an antioxidant herb mixture complex (KPG-7) in Caenorhabditis elegans
Excessive generation of reactive oxygen species within cells results in oxidative stress. Furthermore, accumulation of reactive oxygen species has been shown to reduce cell longevity. Many dietary supplements are believed to have anti-aging effects. The herb mixture KPG-7 contains several components with antioxidant activity. We aim to clarify the mechanisms responsible for the antioxidant acti...
متن کاملEffects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans
Lactic-acid bacteria are widely recognized beneficial host associated groups of the microbiota of humans and animals. Some lactic-acid bacteria have the ability to extend the lifespan of the model animals. The mechanisms behind the probiotic effects of bacteria are not entirely understood. Recently, we reported the benefit effects of Lactobacillus gasseriSBT2055 (LG2055) on animal and human hea...
متن کامل